CDR Design Checklist
RCW 01/15/97, updated 9/18/98

1) Eye Margin
 • how much noise can be added to input while maintaining target BER? (voltage margin)
 • How far can clock phase alignment be varied while maintaining target BER? phase margin
 • how does the static phase error vary versus frequency, temperature and process variation?
 • Is input amplifier gain, noise and offset sufficient?

2) Jitter Characteristics
 • what is the jitter generation? (VCO phase noise, etc.)
 • what is the jitter transfer function? (peaking and bandwidth)
 • what is the jitter tracking tolerance versus frequency?

3) Pattern Dependency
 • how do long runlengths affect system performance?
 • is bandwidth sufficient for individual isolated bit pulses?
 • are there other problematic data patterns? (resonances)
 • does PLL bandwidth, jitter, and stability change versus transition density?

4) Acquisition Time
 • what is the initial, power-on lock time?
 • what is the phase-lock acquisition time when input source is changed?

5) How is precision achieved?
 • are external capacitors, inductors needed?
 • does the CDR need an external reference frequency?
 • are laser-trimming or highly precise IC processes required?

6) Input/output impedance
 • Is S11/S22 (input/output impedance) maintained across the frequency band?
 • are reflections large enough to lead to eye closure and pattern dependency?
 • is >15 dB return loss maintained across the band?

7) Power Supply
 • does the CDR create power supply noise?
 • how sensitive is the CDR to supply noise?
 • Is the VCO self-modulated through its own supply noise? (can be “deadly”)
 • what is the total static power dissipation?
 • what is the die temperature under worse case conditions?

8) False lock susceptibility
 • can false lock occur with particular data patterns?
 • are false lock conditions be detected and eliminated?
 • does the phase detector have VCO frequency leakage that can cause injection locking?
 • can the VCO run faster than the phase/frequency detector can operate? (another “killer”)
 • have all latchup/deadly embrace conditions been considered and eliminated?
References

[Par89] Park et al., M. S., Novel Regeneration Having Simple Clock Extraction and Automatic Phase Controlled Retiming Circuit, *Electronic Letters* 25 (January 1989), 83-84. {clock extraction by filtering}.

[RaO91] Ransijn, H. and P. O’Connor, A PLL-Based 2.5-Gb/s GaAs Clock and Data Regenerator IC, *JSSC* 26, 10 (October 1991), 1345-1353. {Rotational frequency detector, Limiting Amp, Jitter Transfer Measurement}.

Ross, F. E., *An Overview of FDDI: the Fiber Distributed Data Interface*, *IEEE Journal on Selected Areas in Communications 7*, 7 (September 1985), 1046, Table 1. {4b/5b encoding example, example of frame synch characters}.

Rousseau, M., *Block Codes for Optical-Fibre Communication*, *Electronics Letters 12*, 18 (2nd September 1976), 478-479. {mBnB code discussion, run length limits, power spectra, 5b6b recommended}.

Runge, K. and J. L. Gimlett, *20Gb/s AlGaAs HBT Decision Circuit IC*, *Electronics Letters 27*, 25 (5th December 1991), 2376-2378. {GaAs HBT decision circuit example}.

Syed, K. E. and A. A. Abidi, *Gigahertz Voltage Controlled Oscillator*, *Electronics Letters 22* (June 5, 1986), 677-679. {MOS tunable monolithic ring oscillator example}.

1) Eye Margin
 • how much noise can be added to input while maintaining target BER? (voltage margin)
 • How far can clock phase alignment be varied while maintaining target BER? phase margin)
 • how does the static phase error vary versus frequency, temperature and process variation?
 • Is input amplifier gain, noise and offset sufficient?

2) Jitter Characteristics
 • what is the jitter generation? (VCO phase noise, etc.)
 • what is the jitter transfer function? (peaking and bandwidth)
 • what is the jitter tracking tolerance versus frequency?

3) Pattern Dependency
 • how do long runlengths affect system performance?
 • is bandwidth sufficient for individual isolated bit pulses?
 • are there other problematic data patterns? (resonances)
 • does PLL bandwidth, jitter, and stability change versus transition density?

4) Acquisition Time
 • what is the initial, power-on lock time?
 • what is the phase-lock acquisition time when input source is changed?

5) How is precision achieved?
 • are external capacitors, inductors needed?
 • does the CDR need an external reference frequency?
 • are laser-trimming or highly precise IC processes required?

6) Input/output impedance
 • Is S11/S22 (input/output impedance) maintained across the frequency band?
 • are reflections large enough to lead to eye closure and pattern dependency?
 • is >15 dB return loss maintained across the band?

7) Power Supply
 • does the CDR create power supply noise?
 • how sensitive is the CDR to supply noise?
 • Is the VCO self-modulated through its own supply noise? (can be “deadly”)
 • what is the total static power dissipation?
 • what is the die temperature under worse case conditions?

8) False lock susceptibility
 • can false lock occur with particular data patterns?
 • are false lock conditions be detected and eliminated?
 • does the phase detector have VCO frequency leakage that can cause injection locking?
 • can the VCO run faster than the phase/frequency detector can operate? (another “killer”)
 • have all latchup/deadly embrace conditions been considered and eliminated?
References

[Par89] Park et al., M. S., Novel Regeneration Having Simple Clock Extraction and Automatic Phase Controlled Retiming Circuit, *Electronic Letters* 25 (January 1989), 83-84. [clock extraction by filtering].

[RaO91] Ransijn, H. and P. O’Connor, A PLL-Based 2.5-Gb/s GaAs Clock and Data Regenerator IC, *JSSC* 26, 10 (October 1991), 1345-1353. [Rotational frequency detector, Limiting Amp, Jitter Transfer Measurement].

[Ros85] Ross, F. E., An Overview of FDDI: the Fiber Distributed Data Interface, *IEEE Journal on Selected Areas in Communications 7*, 7 (September 1985), 1046, Table 1. {4b/5b encoding example, example of frame synch characters}.

[Rou76] Rousseau, M., Block Codes for Optical-Fibre Communication, *Electronics Letters 12*, 18 (2nd September 1976), 478-479. {mBnB code discussion, run length limits, power spectra, 5b6b recommended}.

[San82] Sandera, L., Improve Datacomm Links by Using Manchester Code, EDN, February 17, 1982, 155-162. {Manchester coding example}.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Journal/Publication Details</th>
<th>Key Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSY97</td>
<td>Walker, R., C. Stout and C. Yen, A 2.488Gb/s Si-Bipolar Clock and Data Recovery IC with Robust Loss of Signal Detection</td>
<td>ISSCC Digest of Technical Papers 40 (February 6-8 1997), 246,247,466.</td>
<td>training loop, loss of signal detection, bb-loop, ring oscillator</td>
</tr>
<tr>
<td>WHK98</td>
<td>Walker, R. C., K. Hsieh, T. A. Knotts and C. Yen, A 10Gb/s Si-Bipolar TX/RX Chipset for Computer Data Transmission</td>
<td>ISSCC Digest of Technical Papers 41 (February 5-7 1998), 302,303,450.</td>
<td>multi-phase architecture, 8-phase VCO, ft-doubler amplifier, bb-loop</td>
</tr>
<tr>
<td>WiF83</td>
<td>Widmar, A. X. and P. A. Franaszek, A DC Balanced, partitioned-Block 8B/10B Transmission Code</td>
<td>IBM Journal of Research and Development 27, 5 (September 1983), 440-451.</td>
<td>{8b/10b encoding example - Precursor to Fiber Channel’s 8B/10B code}.</td>
</tr>
<tr>
<td>Wu92</td>
<td>Wu, J. and R. C. Walker, A Bipolar 1.5Gb/s Monolithic Phase Locked Loop for Clock and Data Extraction</td>
<td>VLSI Circuit Symposium, Seattle, June 3-5, 1992.</td>
<td>{positive feedback PLL loop filter}.</td>
</tr>
<tr>
<td>Yam80</td>
<td>Yamada et al., J., 1.6Gb/s Optical Receiver at 1.3um with SAW Timing Retrieval Circuit</td>
<td>Electronics Letters 16, 2 (17th January 1980), 57- 58.</td>
<td>{clock extraction by SAW}.</td>
</tr>
<tr>
<td>YFW82</td>
<td>Yen, C., Z. Fazarinc and R. Wheeler, Time-domain skin-effect model for transient analysis of lossy transmission lines.</td>
<td>Proceedings of the IEEE 70, 7 (July 1982), 750-757.</td>
<td>{skin-effect lossy transmission line transient simulation modelling}</td>
</tr>
</tbody>
</table>
CDR Design Checklist
RCW 01/15/97, updated 9/18/98

1) Eye Margin
 • how much noise can be added to input while maintaining target BER? (voltage margin)
 • How far can clock phase alignment be varied while maintaining target BER? (phase margin)
 • how does the static phase error vary versus frequency, temperature and process variation?
 • Is input amplifier gain, noise and offset sufficient?

2) Jitter Characteristics
 • what is the jitter generation? (VCO phase noise, etc.)
 • what is the jitter transfer function? (peaking and bandwidth)
 • what is the jitter tracking tolerance versus frequency?

3) Pattern Dependency
 • how do long runlengths affect system performance?
 • is bandwidth sufficient for individual isolated bit pulses?
 • are there other problematic data patterns? (resonances)
 • does PLL bandwidth, jitter, and stability change versus transition density?

4) Acquisition Time
 • what is the initial, power-on lock time?
 • what is the phase-lock acquisition time when input source is changed?

5) How is precision achieved?
 • are external capacitors, inductors needed?
 • does the CDR need an external reference frequency?
 • are laser-trimming or highly precise IC processes required?

6) Input/output impedance
 • Is S11/S22 (input/output impedance) maintained across the frequency band?
 • are reflections large enough to lead to eye closure and pattern dependency?
 • is >15 dB return loss maintained across the band?

7) Power Supply
 • does the CDR create power supply noise?
 • how sensitive is the CDR to supply noise?
 • Is the VCO self-modulated through its own supply noise? (can be “deadly”)
 • what is the total static power dissipation?
 • what is the die temperature under worse case conditions?

8) False lock susceptibility
 • can false lock occur with particular data patterns?
 • are false lock conditions be detected and eliminated?
 • does the phase detector have VCO frequency leakage that can cause injection locking?
 • can the VCO run faster than the phase/frequency detector can operate? (another “killer”)
 • have all latchup/deadly embrace conditions been considered and eliminated?
References

[Cor79] Cordell et al., R. R., A 50MHz Phase and Frequency Locked Loop, *IEEE Journal of Solid State Circuits* SC-14, 6 (December 1979), 1003-1009. {quadricorrel-lator phase detector, Tunable LC Oscillator}.

[DeV91] DeVito et al., L., A 52 MHz and 155MHz Clock-Recovery PLL, *ISSCC Digest of Technical Papers*, 1992, 96,97,253. {quadratic phase detector, Negative resistor chargepump, rotational freq.det.}.

[Par89] Park et al., M. S., Novel Regeneration Having Simple Clock Extraction and Automatic Phase Controlled Retiming Circuit, *Electronic Letters* 25 (January 1989), 83-84. {clock extraction by filtering}.

[RaO91] Ransijn, H. and P. O’Connor, A PLL-Based 2.5-Gb/s GaAs Clock and Data Regenerator IC, *JSSC* 26, 10 (October 1991), 1345-1353. {Rotational frequency detector, Limiting Amp, Jitter Transfer Measurement}.

[Ros85] Ross, F. E., *An Overview of FDDI: the Fiber Distributed Data Interface*, *IEEE Journal on Selected Areas in Communications 7*, 7 (September 1985), 1046, Table 1. {4b/5b encoding example, example of frame synch characters}.

[Rou76] Rousseau, M., *Block Codes for Optical-Fibre Communication*, *Electronics Letters 12*, 18 (2nd September 1976), 478-479. {mBnB code discussion, run length limits, power spectra, 5b6b recommended}.

1) Eye Margin
 • how much noise can be added to input while maintaining target BER? (voltage margin)
 • How far can clock phase alignment be varied while maintaining target BER? phase margin)
 • how does the static phase error vary versus frequency, temperature and process variation?
 • Is input amplifier gain, noise and offset sufficient?

2) Jitter Characteristics
 • what is the jitter generation? (VCO phase noise, etc.)
 • what is the jitter transfer function? (peaking and bandwidth)
 • what is the jitter tracking tolerance versus frequency?

3) Pattern Dependency
 • how do long runlengths affect system performance?
 • is bandwidth sufficient for individual isolated bit pulses?
 • are there other problematic data patterns? (resonances)
 • does PLL bandwidth, jitter, and stability change versus transition density?

4) Acquisition Time
 • what is the initial, power-on lock time?
 • what is the phase-lock acquisition time when input source is changed?

5) How is precision achieved?
 • are external capacitors, inductors needed?
 • does the CDR need an external reference frequency?
 • are laser-trimming or highly precise IC processes required?

6) Input/output impedance
 • Is S11/S22 (input/output impedance) maintained across the frequency band?
 • are reflections large enough to lead to eye closure and pattern dependency?
 • is >15 dB return loss maintained across the band?

7) Power Supply
 • does the CDR create power supply noise?
 • how sensitive is the CDR to supply noise?
 • Is the VCO self-modulated through its own supply noise? (can be “deadly”)
 • what is the total static power dissipation?
 • what is the die temperature under worse case conditions?

8) False lock susceptibility
 • can false lock occur with particular data patterns?
 • are false lock conditions be detected and eliminated?
 • does the phase detector have VCO frequency leakage that can cause injection locking?
 • can the VCO run faster than the phase/frequency detector can operate? (another “killer”)
 • have all latchup/deadly embrace conditions been considered and eliminated?
References

[Par89] Park et al., M. S., Novel Regeneration Having Simple Clock Extraction and Automatic Phase Controlled Retiming Circuit, *Electronic Letters* 25 (January 1989), 83-84. {clock extraction by filtering}.

[Rao91] Ransijn, H. and P. O’Connor, A PLL-Based 2.5-Gb/s GaAs Clock and Data Regenerator IC, *JSSC* 26, 10 (October 1991), 1345-1353. {Rotational frequency detector, Limiting Amp, Jitter Transfer Measurement}.

[Ros85] Ross, F. E., An Overview of FDDI: the Fiber Distributed Data Interface, *IEEE Journal on Selected Areas in Communications 7*, 7 (September 1985), 1046, Table 1. {4b/5b encoding example, example of frame synch characters}.

[Rou76] Rousseau, M., Block Codes for Optical-Fibre Communication, *Electronics Letters 12*, 18 (2nd September 1976), 478-479. {mBnB code discussion, run length limits, power spectra, 5b6b recommended}.

[San82] Sandera, L., Improve Datacomm Links by Using Manchester Code, EDN, February 17, 1982, 155-162. {Manchester coding example}.

1) Eye Margin
 • how much noise can be added to input while maintaining target BER? (voltage margin)
 • How far can clock phase alignment be varied while maintaining target BER? phase margin)
 • how does the static phase error vary versus frequency, temperature and process variation?
 • Is input amplifier gain, noise and offset sufficient?

2) Jitter Characteristics
 • what is the jitter generation? (VCO phase noise, etc.)
 • what is the jitter transfer function? (peaking and bandwidth)
 • what is the jitter tracking tolerance versus frequency?

3) Pattern Dependency
 • how do long runlengths affect system performance?
 • is bandwidth sufficient for individual isolated bit pulses?
 • are there other problematic data patterns? (resonances)
 • does PLL bandwidth, jitter, and stability change versus transition density?

4) Acquisition Time
 • what is the initial, power-on lock time?
 • what is the phase-lock acquisition time when input source is changed?

5) How is precision achieved?
 • are external capacitors, inductors needed?
 • does the CDR need an external reference frequency?
 • are laser-trimming or highly precise IC processes required?

6) Input/output impedance
 • Is S11/S22 (input/output impedance) maintained across the frequency band?
 • are reflections large enough to lead to eye closure and pattern dependency?
 • is >15 dB return loss maintained across the band?

7) Power Supply
 • does the CDR create power supply noise?
 • how sensitive is the CDR to supply noise?
 • Is the VCO self-modulated through its own supply noise? (can be “deadly”)
 • what is the total static power dissipation?
 • what is the die temperature under worse case conditions?

8) False lock susceptibility
 • can false lock occur with particular data patterns?
 • are false lock conditions be detected and eliminated?
 • does the phase detector have VCO frequency leakage that can cause injection locking?
 • can the VCO run faster than the phase/frequency detector can operate? (another “killer”)
 • have all latchup/deadly embrace conditions been considered and eliminated?
References

[Cor79] Cordell et al., R. R., A 50MHz Phase and Frequency Locked Loop, *IEEE Journal of Solid State Circuits* SC-14, 6 (December 1979), 1003-1009. {quadricorrelator phase detector, Tunable LC Oscillator}.

Fiedler, A., R. Mactaggart, J. Welch and S. Krishnan, A 1.0625Gbps Transceiver with 2x-Oversampling and Transmit Signal Pre-Emphasis, *ISSCC Digest of Technical Papers* 40 (February 6-8 1997), 238,239,464. {transmit pre-emphasis, skin loss equalizer}.

Galton, I., Analog-Input Digital Phase-Locked Loops for Precise Frequency and Phase Demodulation, *Transactions on Circuits and Systems-II: Analog and Digital Signal Processing* 42, 10 (October 1995), 621-630. {good discussion of delta-sigma analysis of BB PLL’s}.

Gupta, S. C., Phase-Locked Loops, Proceedings of the IEEE 63, 2 (February 1975), 291-306. {Good systematic outline survey of communication-type PLL’s}.

[Par89] Park et al., M. S., Novel Regeneration Having Simple Clock Extraction and Automatic Phase Controlled Retiming Circuit, *Electronic Letters* 25 (January 1989), 83-84. {clock extraction by filtering}.

[RaO91] Ransijn, H. and P. O’Connor, A PLL-Based 2.5-Gb/s GaAs Clock and Data Regenerator IC, *JSSC* 26, 10 (October 1991), 1345-1353. {Rotational frequency detector, Limiting Amp, Jitter Transfer Measurement}.

[Ros85] Ross, F. E., An Overview of FDDI: the Fiber Distributed Data Interface, IEEE Journal on Selected Areas in Communications 7, 7 (September 1985), 1046, Table 1. {4b/5b encoding example, example of frame synch characters}.

[Rou76] Rousseau, M., Block Codes for Optical-Fibre Communication, Electronics Letters 12, 18 (2nd September 1976), 478-479. {mBnB code discussion, run length limits, power spectra, 5b6b recommended}.

[San82] Sandera, L., Improve Datacomm Links by Using Manchester Code, EDN, February 17, 1982, 155-162. {manchester coding example}.

[Shi87] Shin et al., D., Selfcorrecting Clock Recovery Circuit with Improved Jitter Performance, Electronics Letters 23, 3 (29th January 1987), 110-111. {Improved Hogge detector}.

[SyA86] Syed, K. E. and A. A. Abidi, Gigahertz Voltage Controlled Oscillator, Electronics Letters 22 (June 5, 1986), 677-679. {MOS tunable monolithic ring oscillator example}.

