
Cir cuit Optimization Using the Simplex Algorithm

Rick Walker, Ken Poulton,
Cheryl Stout, Bill McFarland,

James Kang, Tom Knotts

High Speed Electronics Department, HP Labs
1651 Page Mill Blvd., Bldg. 28C, Palo Alto, CA 94304

ABSTRACT

A large fraction of the circuit design engineer’s time is spent in optimiza-
tion of circuit parameters.An optimization program for SPICE circuit design
using the Simplex algorithm is described.This technique can relieve the engi-
neer from much of the tedium involved in circuit optimization.Any number of
parameters, such as resistor values, currents and transistor sizes, may be automat-
ically adjusted to optimize an objective measure of circuit performance.

To date, a wide variety of circuits have been optimized, including: several
MODFET digital cells, an HP3X high-speed output stage, HP3X and HBT com-
parators and an HBT sample and hold.Ke y performance measures have been
improved up to 1.5x over hand designs by a skilled engineer.

This paper describes the Simplex algorithm and demonstrates it’s applica-
tion to circuit design. Some pitfalls and heuristics for designing viable objective
functions are discussed.

INTRODUCTION

The purpose of this paper is to share the authors’ collective experience in the area of com-
puter-aided circuit optimization with HP’s design community at large. Ourdepartment has long
been involved with high speed IC design where a high degree of circuit optimization is required.
In the design phase of a typical circuit, a large fraction of the engineer’s time is spent doing
tedious hand optimization.Often we are working with experimental processes whose parameters
are subject to change.In these cases, a given circuit cell may need to be re-optimized for each
new variation of the process.

OPTIMIZA TION

The first step in setting up a circuit optimization is to derive a quantitative description of
circuit performance.Such a performance measure is called an ‘‘objective function’’. As an
example, an objective function for a digital logic gate would probably include such performance
measures as: output risetime, total power dissipation, propagation delay, and so on.We hav echo-
sen to define our circuit performance metric so that it is minimized to achieve the highest circuit
performance. Theobjective function may then be intuitively interpreted as a sum of terms which
penalize the circuit for any failure to meet the design specification.Once the objective function
has been formulated, we can minimize it with any of a number of minima-finding algorithms,

thereby optimizing the circuit performance.

There is a wealth of strategies in the literature for finding the minima of a function [1].
Many of the more sophisticated minimization algorithms such as ‘‘steepest descent’’, ‘ ‘Fletcher-
Reeves’’ and ‘‘Marquardt’’, have the drawback of requiring a symbolic calculation of the
derivative of the function to be minimized.Since this information is not available from numerical
circuit simulation results, these methods are not appropriate for use with SPICE.

The concept of circuit optimization using SPICE or similar simulators is not new. Sev eral
systems exist in the realm of university research [2],[3].Difficulty of obtaining these systems in a
form compatible with HPSPICE has forced us to create our own program, however. The opti-
mization strategy we chose uses the Simplex algorithm proposed by Nelder and Mead in 1965
[4]. It requires only function evaluations (no explicit calculation of derivatives) and is simple
enough to program and debug easily [5].

It is worth noting that we are optimizing circuitparameters, not circuit topology. Optimiz-
ing circuit topologies for a given task is amuch harder problem, although there is some AI-based
research on this topic at universities [6].

THEORY OF THE SIMPLEX METHOD

In searching an N-dimensional space of the objective function defined by the N parameters
of the circuit, it is unrealistic to expect any algorithm to be able to find a global minimum from
any starting point. The best that can be done is for the design engineer to provide a starting cir-
cuit configuration that is within the ‘‘bowl’ ’ of the global minimum.The minimization algorithm
can then hunt downhill from the starting point to find the minimum of the function.(This should
not necessarily be considered a drawback... the need for a skilledoperator is why we still have
jobs in the computer age!)

Once an initial starting point has been given, how do we converge to a minimum? The
algorithm first generates a ‘‘simplex’’: a simplex is a mathematical figure that has one more vertex
than the space in which it is embedded.For example, on a plane (2 dimensions), a simplex is a
triangle, in 3 dimensional space, a simplex is a tetrahedron, etc.

After generating the initial simplex, the algorithm ranks the vertices according to the value
of the objective function at each point.It then takes the worst vertex and attempts to substitute a
new, better vertex for it. Improved vertices are generated by either reflection, expansion, contrac-
tion or shrinkage. A description of these possibilities for the triangular simplex of a two dimen-
sional optimization is shown in figure 1.

Figure 1. Potential Simplex Moves.

The first attempt at a better vertex takes vertex W (the worst one) and reflects it through the cen-
troid of the other vertices to try point R.If the objective function is better at point R than the 2nd
best point N, then vertex R replaces W and an attempt is made to step even further in that direc-
tion by trying vertex E. If E is still better, it replaces R in the simplex.

If point R gav ea worse value of the objective function than the 2nd best point N, an attempt
is made instead to contract the worst point W towards the best points by moving to point C. If C
is better than N, it replaces W, otherwise, all the points are shrunk to points S in the direction of
the best point B.

Once a new simplex has been constructed by one of the four steps, the vertices are reranked
and the cycle is repeated until convergence to the minimum of the function has occured.

Figures 2 shows an initial configuration of a simplex on an objective surface which consists
of a u-shaped valley with a minimum at (1,1) with the function evaluations shown as dots.Figure
3 shows the simplex after the first iteration.It has accepted a reflection of the worst point and
rejected an expansion attempt that gav ea worse value. Figure 4 shows the simplex after the sec-
ond iteration where a contraction was accepted after an initial reflection try. Figure 5 shows a
complete trace of the simplex after it has converged to the minimum of the valley.

FORMULA TION OF THE OBJECTIVE FUNCTION

The key to enabling the computer to optimize a circuit is to fully encapsulate all relevant
measures of the desired circuit behavior into a single numerical value. Thisvalue will then be a
function � (P1, P2

. . . PN) of each of the variable parameters.An initial try of such a function for
an output stage might be

� (P1
. . . PN) = Trisetime + T falltime.

Using this function to drive the optimizer would likely reveal some surprises.It may be possible
to choose values ofP1, P2, . . .PN so thatTrisetime is traded off with T falltime. Instead of ending up
with 100ps rise and fall, you might get 50ps rise and 140ps fall. An ev en more disconcerting pos-
sibility would be that the optimizer might drive the output voltage swing to nearly zero to achieve
the best risetime.A better definition of� to avoid these two problems would be

� = Trisetime + T falltime + � (Trisetime − T falltime)
2 + � exp(Vspec − Vswing).

Here we penalize the objective function for any imbalance in the rise/fall times. If it is critical
that these times be well matched, we can make � large. Theexponential term gives us a large
penalty whenever the simulated swingVswing falls below the target specVspec. (In practice, a
piece-wise linear function is generally used instead of an exponential, so as to have zero penalty
for performance which meets or exceeds the specification.)

It is often appropriate to include a similar limit on total power dissipation.A second DC
analysis might be run to calculate the noise margin of the gate. Overshoot and ringing may need
to be considered also.A good strategy is to run the optimizer, analyze the minimized configura-
tion, and then modify the objective function to avoid any unpleasant behavior.

In theoptspice program described below, the objective function may be composed of multi-
ple terms. Given a measure of circuit performancex, a desired performancexgood , and a poor
performancex poor , the normalized contribution to the objective function due to the metricx is

norm

x, xgood,x poor

= max

0,

x − xgood

x poor − xgood

+ max

0,

x − x poor

x poor − xgood

As shown in figure 6, the normalized function is 0 for values better than the ‘‘good’’ value, 1 at
the ‘‘poor’’ value, and greater than 1 (at twice the slope) for values worse than the ‘‘poor’’ value.
The idea is that 1) if the ‘‘good’’ value is achieved, then no contribution is made to the objective
function; 2) terms worse than their ‘‘poor’’ values will be emphasized in the total objective value.

Each of the normalized contributions is then multiplied by a relative weight and averaged
together to compose the complete objective function.

Figure 6. Objective Normalization Function.

IMPLEMENT ATION

Our initial investigation resulted in a program using the Simplex algorithm that had the cir-
cuit topology and the calculation of the objective function written into the program.This required
rewriting portions of the program for each change in the circuit topology or objective function
and required a detailed understanding of the optimization algorithm.This simple version of the
program was used by several members of our department.

Soon it became clear that a more user-friendly interface was needed.The present version
of the program, called ‘‘optspice’’ , provides a simple interface that can be learned with a mini-
mum of effort. Optspice operates on a spice deck that includes several command lines recognized
only byoptspice:

The .opt_param statement defines the names and starting values of the parameters to be opti-
mized. Italso defines starting step size and the error size for convergence.

The .opt_limit statement allows the designer to specify hard limits on parameter values. These
limits are evaluated by the HPSPICE post(1) program, so fairly general expressions may be used.

The .opt_obj statement specifies the names and target values for the objectives for the circuit per-
formance. Multiple.opt_obj statements are allowed (with weights); the total objective function
is the weighted average of all of the normalized objective terms.

The .opt_def statement is used to define how to measure the objectives from the results of the
simulation. Theseexpressions are evaluated by post(1) so the full power of that wav eform analy-
sis tool is available without additional programming.

Optspice cycles through the following steps:

• Generate New Point
A new point in the parameter space is generated according to the Simplex algorithm.

• Test Limits
The new point is tested against the limits specified by the.opt_limit statements by running
post(1) to evaluate the expressions.

• Run Spice
A leg al HPSPICE input deck is generated and run.

• Evaluate Objectives
Post(1) is used again to determine performance at this point.It generates the single number
for the total objective function.

• Sav eor Discard Point
If the new point is better than any of the old points in the simplex, it is inserted and the pre-
vious worst point is discarded.

The cycle continues until the process converges to a set precision or a limit on iterations is
reached.

EXAMPLE OPTSPICE INPUT DECK:

test3: trivial example of RLC settling optimization

vins %vin 0 pulse (-1 1 100ps 100ps) # input source

circuit to be optimized
We wish to minimize the settling time of this RLC circuit
The R is the variable.
l1 %vin 1 25nH
r1 1 %vout value=opt.r1
c1 %vout 0 1pF

parameters to optimize:
.OPT_PARAM r1 start=50 relstep=.3 reltol=.01

raw file (save only what we need)
.post tr v(vin) v(vout)
.post tr i(vins)

definitions
1% settling tolerance on vin and vout:
.OPT_DEF tol=.01
.OPT_DEF xsettle(w,vtol,t)=xcross(abs(w-yvalue(w,t)),vtol,-1,t)
.OPT_DEF tsett=max(xsettle(vin,tol,10n),xsettle(vout,tol,10n))

oshootp finds the overshoot in waveform w the time window [x1,x2]
.OPT_DEF oshootp(w,x1,x2)=max((w-yvalue(w,x2)+100)*xlim(x1,x2)-100)
.OPT_DEF xlim(x1,x2)=trunc(time-x1+1,1)*trunc(x2-time+1,1)
.OPT_DEF oversh=max(oshootp(vin,0n,10n),oshootp(vout,0n,10n))

limits
.OPT_LIMIT r1>5

objectives
Primary objecti ve: short settling time
.OPT_OBJ tsett good=1e-9 poor=3e-9 weight=3
Secondary objective: small overshoot
.OPT_OBJ oversh good=5e-3poor=25e-3 weight=1

.tran 100p 10n

.end

EXPERIMENT AL RESULTS

Some circuits which were optimized with one or another version of the optimizer are listed
in Table 1.

Circuit #parms Objective initial optimized improvement

SAC/MODFET buffer 5 trise + tdelay 104 ps 78 ps 1.33 x

HBT comparator 6 min. power at 6GHz clock 2.4 ma 2.3 ma 1.04 x

SAC/MODFET 2:1 Sel. 6 trise + tdelay, 2 nodes 163ps 132ps 1.23x

SAC/MODFET 4:1 Sel. 7 trise + tdelay, 3 nodes 356ps 278ps 1.28x

SAC/MODFET latch 7 trise + tdelay 104.5 ps 68.7 ps 1.52 x

HP3X comparator 9 tregeneration + trecovery - 260ps -

3 stage HP3X driver v.1 12 ttransition 66 ps 50 ps 1.32 x

2 stage HP3X driver 13 ttransition 70 ps 52 ps 1.35 x

3 stage HP3X driver v.2 13 ttransition 64 ps 46 ps 1.39 x

SAC/MODFET driver 13 trise, 3 nodes 130ps 111ps 1.17x

HBT sample/hold 7-25 tacq + tsettling + power 215 ps 140 ps 1.54 x

Table 1. Summary of Optimized Circuits

In general,optspice seems to give the greatest performance improvements when the circuit
has many parameters with strong interactions.When a particular objective is controlled mainly
by one parameter, a human designer can often make quicker progress thanoptspice. Howev er,
when more than 2 or 3 parameters interact, a human designer quickly gets bogged down in the
repetition of trials and the difficulty of trying to understand the interactions.This is whereopt-
spice can make a big contribution: it saves the designer’s time by letting the computer do the
tedious job of multi-parameter optimization.

Sometimes, the designer gives up some understanding of the circuit by letting the computer
do the work. At other times, however, we hav egained valuable insight into a circuit when the
optimization has lead to designs that we did not anticipate, and that we might not have otherwise
found.

Usually, there are conflicting constraints and objectives. It has been found that selecting
the right set of objectives often involves runningoptspice several times, adding constraints and
objectives as needed. Oncethese are defined, however, it is possible to make circuit or model
changes and reoptimize the circuit with a minimum of effort. Thisallows designers to play
‘‘ what if’’ games with circuits or device models with some assurance that the results are opti-
mized for each trial.

As you might suspect,optspice is a conspicuous consumer of compute cycles. Inthe cir-
cuits optimized so far, the runtimes of the individual spice runs have ranged from 15 to 120 sec-
onds on an HP 9000/835.Optimization ofN parameters generally takes about 2N2 spice runs.
Including overhead of 10-45 seconds for evaluation of constraints and the objective function, this
yields optimization runs ranging from 15 minutes for 4 parameters up to a day or two for 25
parameters.

One of the problems with any optimization scheme is finding the global minimum in the
presence of local minima.Tw o strategies have been employed to work around this problem.The
most obvious method is to start circuit optimizations from several starting points.This has been
used by several designers; some found that they reached somewhat different final points, while

some found little change in the final result.Presumably, the characteristics of the circuit and the
nature of the alternate starting points both play large parts in this behavior.

Another strategy is built into optspice: after completing one optimization run, another is
started from the best point of the first run, with an increased starting step size for each parameter.
This seems to find a better point than the first trial about half the time, though the improvement is
usually small.In general, it is very hard to tell what the parameter space is like, so knowing how
close your solution is to the very best solution is quite difficult.

CONCLUSIONS

A methodology and program for computer-aided circuit optimization has been presented.
Such a system can be easy to use, while saving the design engineer from needless tedious work.
Actual performance gains for optimized circuits have been observed to be as high as 1.5 X.In
most cases, the program outperformed hand optimization.

Although more sophisticated programs exist in the realm of university research, to our
knowledge this work is the first application of these techniques to HPSPICE.It is our hope that
these results will encourage HP’s designers to make use of computer-aided circuit optimization
and encourage HP’s tool builders to provide more sophisticated optimization tools.

REFERENCES

[1] William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling, “Numerical
Recipes in C”,Cambridge University Press, Copyright 1988, pp. 291-352, pp. 542-547.

[2] William Nye, David C. Riley, Alberto Sangiovanni-Vincentelli, Andre L. Tits,
“DELIGHT.SPICE: An Optimization-Based System for the Design of Integrated Circuits”,
IEEE Transactions on CAD, Vol 7, No. 4, April 1988, pp 501-519.

[3] Gen-Lin Tan, Shao-Wei Pan, Walter H. Ku, An-Jui Shey, “ADIC-2.C: A General-Purpose
Optimization Program Suitable for Integrated Circuit Design Applications...”, IEEE Trans-
actions on CAD, Vol 7, No. 11, Nov 1988, pp 1150-1163.

[4] Nelder, J.A., and Mead, R. 1965, “An Algorithm for Least Squares Estimation of Non-Lin-
ear Parameters”,Computer Journal, vol. 7, p. 308.

[5] Caceci,M.S., and Cacheris, W.P. 1984, “Fitting Curves to Data”,Byte, vol. 9, no. 5, pp.
340-362.

[6] Marc DeGrauwe, et al, “An Analog Expert Design System”,Digest, 1987 IEEE Interna-
tional Solid State Circuits Conference, pp 212-213

